在机器学习中,绝大部分模型都需要大量的数据进行训练和学习(包括有监督学习和无监督学习),然而在实际应用中经常会遇到训练数据不足的问题。不如图像分类,作为计算机视觉最基本的任务之一,其目标是将每副图像划分到指定类别集合中的一个或多个类别中。当训练一个图像分类模型时,如果训练样本比较少,该如何处理?
在机器学习中,绝大部分模型都需要大量的数据进行训练和学习(包括有监督学习和无监督学习),然而在实际应用中经常会遇到训练数据不足的问题。不如图像分类,作为计算机视觉最基本的任务之一,其目标是将每副图像划分到指定类别集合中的一个或多个类别中。当训练一个图像分类模型时,如果训练样本比较少,该如何处理?